Mars's Great Northern Ocean:
European Southern Observatory have discovered evidence that Mars once had an ocean, billions of years ago, which bolsters the chances life having arisen there.
You'd expect a guy writing a blog called 'Ancient Solar System' to devote pages and pages to that, but I'm not going to go to town on it, for two reasons: Firstly the rest of the astronomy world has done that for me. Secondly, the great northern ocean on Mars isn't a new idea. There've been hints for a long time that there was once an ocean there, like, well, the hugely suspicious depression surrounded by shoreline-like features.
Above: A relief map of Mars. Blue is lower, red is higher. Notice something anout the north and how abruptly the height changes? Yeah. Courtesy of ESA |
Instead of Mars I'm going to the other end of the spectrum in the search for life - not very small microbial life in the Martian ocean, but the chance of finding very big, very powerful, space faring civilisations - as slim as the chance of that might actually be, it's never been ruled out.
Let me explain: If, like me, you spend your free time looking through obscure scientific papers[1] you'll know that sometimes you come across an insane gem. An idea, or a plan for an experiment, that would make Ernst Blofeld drop his cat.
Above: The cat is clearly the brains of the operation |
Galactus's atom smasher:
You have probably heard of the Large Hadron Collider? It's an experiment seventeen miles across, that is designed to push the laws of physics as close to breaking point as humanly possible - here's a video of Brian Cox explaining how - he's good at that stuff:
Above: A quick run down on how the LHC works. Brian Cox makes it look simple. It's a wee bit more complex than that. Well, either it's more complex than that, or someone at CERN has figured out a way to make a lot of money. Courtesy of CERN.
The basic idea is easy to get: Have you ever seen someone rub a balloon on their hair, and seen the electric field pick their hair up? A particle accelerator (like the LHC) works on the same principle, except the electric field is immensely stronger and the piece of hair is a tiny, tiny proton. The protons get pulled up to speeds so close to the speed of light that the weirdness of general relativity comes into play - things like time slowing down, particles getting more massive, and distance going all screwy are observable. The helpless protons are smashed, at this terrible speed, into things - another proton going the other way, a static heavy atomic nucleus, and on one occasion (so rumour at my old university has it) their staff cafeteria.
The more detail you want to get, and the harder you push the laws of physics, the more speed you need. To get to the fundamental measurements of reality, the 'Planck distance' 'Planck time' and 'Planck energy', would need an accelerator of insane, gargantuan proportions.
Above: It'd need to be big, in the comic book 'evil demigod' sense of the word.... Ok, I was just looking for an excuse to bring this picture of Galactus into the mix. Courtesy of comicbookvine.com |
I'll give you a few highlights:
- The power plant would, if it converted matter straight into energy, consume something like 100 times the weight of the Sun in fuel for every proton it accelerated.
- The electric fields would be so crammed with energy they would spontaneously create new matter from seemingly empty space. Because of this only so much energy could be crammed into them, so...
- ...at a minimum the accelerator would be thousands of times bigger than the distance from the Earth to the Sun - bigger than our entire solar system.
- Even with the electric fields that spread out, the energy density of the device would be so high it would be right on the edge of collapsing in on itself and becoming a black hole.
- In fact, controlled black holes might be used in the design.
- Magnetars, neutron stars so highly magnetised they polarise space itself and make atoms become tube shaped, would also be used in the construction.
- Not to mention that the detectors used to measure the wreckage of these terrible Planck-energy protons hittng each other would get very, very, radioactive, real quick - the amounts of radioactive waste produced as burnt out, irradiated, particle detectors are described as 'cosmic' by the author, and we can leave it at that.
Funnily enough.....no.
Lacki turns his whole (already bonkers) idea on its head, and brings in space aliens: We wouldn't be able to build one of these for millenia, if ever. It's engineering on a cosmic scale. But the universe is vast, billions of years old, and we know that a habitable planet like Earth can produce trillions of species for billions of years. So, the odds suggest, it's possible there are other civilisations out there much older than us, but with the same basic need to advance their science and technology - perhaps with their own versions of the LHC.
Above: This is a visualisation of what happens in the bit of the LHC where things smash into each other at nearly lightspeed. I don't understand it either. |
Above: What Brian Lacki has planned makes the LHC look puny. Puny I tell you!!! Courtesy of CERN |
Elsewhere in the Universe:
Hyper-hyper velocity star:
If intelligent creatures might, one day, built engines of terrible power then mother nature is already doing so: This week a star was found travelling through space at 1200 km a second - that's 40 times faster than our fastest spaceship, and getting on for the kinds of speeds a starship would need. A whole star doing that sort of speed is unthinkable - it got this way, it seems, when it was caught in the blast of a supernova.
NASA plans crewed commercial-space demo missions:
The 'newspace' companies like SpaceX have been working for a chance to show they can sent people, as well as cargo, to a destination in space for a while now. NASA is now planning to put slots into the launch schedule for the ISS that will give them their chance.
Dawn pulls into orbit around Ceres:
The Dawn mission becomes the first craft to orbit two worlds - first the asteroid Vesta now the dwarf planet Ceres.
Elsewhere on the internet:
Why we should return to Venus
Unravelling the magnetism of Uranus and Neptune
Mapping an asteroid with radar
Neutrinos, what we still don't know.
SETI - how the search continues
Hubble sees in UV
Organisation to promote better space travel launched
[1]I'm not expecting there to be a lot of you[2]
[2] I'm so alone.
[3] When an 'Institute of Advanced Studies' has an address of 'Einstein drive' you don't ask 'advanced study of what?' You don't want to offend someone and come home to find a black hole has swallowed your house.
[4] Most of the energy would be dispersed by the scattering subatomic debris. Otherwise the recognisable effect would be things exploding for no obvious reason.
No comments:
Post a Comment