Technology is usually a double edged sword, which is why a news story I've come across this morning has left me with a particularly mixed collection of emotions: The American Defence Advanced Research Projects Agency is working towards developing designer micro-organisms, engineered to slowly change the surface environment of the planet Mars to some thing more habitable.
That would be a huge achievement, and Mars is a prime target for terraforming: Mars is in many ways already similar to Earth, and there's plenty of evidence that it may have been intermittently more habitable in the past - it is just suffering a very severe case of climate shift currently. To my mind, IF we can be sure we aren't destroying tracers of native Martian life, past or present, then there's no reason to keep Mars in its current state if we can change it - but for the foreseeable future, we can't be sure of that. And, I'm sure, a lot of people will see the magnificent Martian wilderness as being worth keeping around for its own sake.
Yes, it is beautiful - but think how much more beautiful it would be with just one plant growing on that soil.... Courtesy of NASA |
Engineered for space:
While dropping microbes onto Mars is going to be controversial - especially given that that might destroy or obscure any evidence as to whether or not Mars ever had native life - the 'Living Foundry' project, which is where this has come from, is about a good deal more than that. Some of the most interesting, and non controversial, applications of engineered microbes in space are aimed at the asteroids and comets - tiny worlds that we could quickly explore and know, and then be ready to change
Above: A 50 km wide asteroid, 253 Mathilde. Is that 50 km of rock, 50 km of fertiliser, or 50 km f microbe food and rare metals? Courtesy of ESA. |
Above: A particle of asteroid dust, being eaten by ,microbes called Metallosphaera sedula |
The idea has been looked at before, and would need none of the massive engineering development costs incurred by mining asteroids in a more 'conventioanl' way - IE with large chunks of machinery, manned spacecraft, and new technologies which need to be hauled into deep space. DSI's plan could be pulled off with a modest sized space probe and a handful of cubesats. And the idea of mining with bacteria isn't a new thing either: Ores here on Earth are already processed using microbes.
Above: A heap bioleaching site, extracting copper using microbes. Courtesy of Mining Technology magazine. |
Above: the massive (fictional) mining ship Red Dwarf - but right now it looks like space mining ships could be much, much smaller. Courtesy of DrWhoOne on deviantart.com |
Dragon spacecraft lost:
SpaceX's most recent attempt to launch their Dragon spacecraft towards the ISS has resulted in an unexpected disaster: the craft has been lost in an explosion, just before the first stage booster separated. It's not clear what caused the explosion, but supplies, research experiments, and a number of cubesat space craft (due to be launched from the station) were destroyed.
At present it isn't clear what caused the explosion, after several thousand man hours of reviewing the data. Elon Muck has tweeted that his team are now trying to recover the last few milliseconds of data, for any clues. ESA Director General Jean-Jacques Dordain offered SpaceX the following message of condolence and support:
"We at the European Space Agency deeply regret this failure that shows that sending launchers into space is a very hard job. However a failure does not undermine all the previous successes. We wish our colleagues on the other side of the ocean all our best in fixing the problem and getting back into flight again soon".
One online forum has even started a 'Best wishes to SpaceX' thread!
Elsewhere on the internet:
Giant black holes soon to be imaged
Student experiments fly into space
No comments:
Post a Comment